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Remarks on the quantum dilogarithm 
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i Department of Mathematics, University of California, Berkeley. CA 94720, USA 

Received 10 1anu;uy 1995 

Abstracr A quantum analogue of the dilogarithm function has been introducd-recently by 
Faddeev and Kashaev in such a way that a cedain identity in the Weyl algebra U'# plays the 
role of the five-term dilogarithm identity. We study this identity in the limit when y approaches 
a root of unity and show t M  it then reduces to the 'restricted sm-triangle relation' which has 
been used previously by Bazhanov and Baxter as a local integrability condition of a class of 
three-dimensional solvable lattice models. 

1. Introduction 

The dilogarithm function has an outstanding record of appearances in various branches of 
physics and mathematics. In mathematics, dilogarithms arise in number theory (the study 
of the asymptotic behaviour of partitions, e.g. [ I ,  21; the values of Dedekind {-functions at 
s = 2 [3]); algebraic K-theory (the Bloch group [4]); the geometry of hyperbolic three- 
manifolds [5,6]; the representation theory of Viasoro and Kac-Moody algebras [7] and 
conformal field theory [8,9]. 

In physics, the dilogarithm appears, for instance, in the computation of the low- 
temperature asymptotic$ of the entropy [lo, 111, and in calculations of the bulk free 
energy of certain two- and three-dimensional solvable lattice models [12-151. Recently, 
the dilogarithm identities (through the thermodynamic Bethe ansatz) have appeared in 
the investigation of the ultraviolet limit and of the critical behaviour of integrable two- 
dimensional quantum field theories and lattice models 116-191 (see also [20] for the K- 
theoretical interpretation of these identities). Many properties of the dilogarithms mentioned 
above can be found in the survey [211. 

Recall the definition and some basic properties of the dilogatithm. The Euler dilogarithm 
Liz(x) is defined for 1x1 -= 1 by 

= log(l - t )  
dt 

x" 
Liz(x) = c - = - 1 nz 0 t n=l 

and it can be analytically continued to the complex plane with the branch cut from 1 to 00 

along the real axis using the integral in (1.1). The related Rogers dilogarithm function L ( x )  
is defined as 

L ( x )  = -i dt = Liz(*) + log x log( I - X) . t 1 - t  

5 On leave of absence from the Institute for High Energy Physics, Protvino. MOSCOW Region. 142284, Russia. 
11 Supported by Sloan Fellowship and by Grant DMS-32961290. 
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The most fundamental property of the dilogarithm function is the 'five-term' identity which 
in terms of L(x) reads as 

V V BazAanov and N Yu Reshetikhin 

Note that this relation, considered as an equation for the function L(x) E C3[0, I], 
determines L ( x )  up to a constant multiplier. When x and y are real and 0 < x, y c 1 all 
the functions L in (1.3) are real and uniquely defined in the obvious sense by the integral 
io (1.2). By analytic continuation the relation (1.3). with a proper choice of the branches 
of'L, remains valid for arbitrary complex x and y. 

The five-term identity can be written in a number of different equivalent forms by using 
other more elementary relations for L(x): 

L(x) = -L(1 - X) + d / 6  L(x) = -L(l/x) + d / 3  

L(x) = -L (=) 
1 - x  

where the last relation is a consequence of the first two. In particular, applying (1.5) for 
each term in (1.3) and then substituting x/(x - 1) and y / ( y  - 1) for x and y one obtains 

L(x )+Lcy)=L (1.6) 

Now let us describe the function Liz.r(x) which will be considered as the quantum 
dilogarithm [22]. Consider the product 

It is well known (see e.g. [23]) that 

where 
n-1 

( x :  4). = nu- 4%. 
k=O 

Below we will use these functions as just formal power series over x ,  
Define the q-integral and the q-derivative in a standard way 

We introduce the function LiZ.Jx) such that 

log(l - f )  
D9Li&) = - d d  t 

Liz,9 ( x )  = - 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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Now consider the Weyl algebra W over C[q, q-'1 generated by invertible elements U 

u u = q u u .  (1.14) 

Denote by w the following completion of this Weyl algebra. It is a vector space spanned 
by formal power series in U and U ordered in the following way: 

a = ak,c(q)uku'. (1.15) 

and U with the relation 

k . 1 3  

The relation (1.14) determines multiplication in w 
ab = (ab)m.n(q)u"um (1.16) 

n . n 3  

where 

(1.17) I(k-n) (ab),,, = c ax.&)bn-k,,-i(q)q . 
k,1>0 

Consider the following three remarkable relations between the elements of w: 
(U; q)m(u; 4)m = (U + U ;  4)m 
(U; q)m(u; q)w = (U + U - vu; q)m 
(U; q)m(u; 4)m = (4 q ) m ( - w  q)m(u; 4)- 

(1.18) 
(1.19) 

(1.W 
where (a, 4)- with a E w is defined by the power series (1.8). The first relation (1.18) is 
the well known property of the q-exponentials. The second relation (1.19) has been found 
recently in [?A], while the thiid one is a simple consequence of the first two. 

Faddeev and Kashaev 1221 have recently given an interesting interpretation to this last 
relation (1.20). suggesting that it should be regarded as a quantum analogue the 'five-term' 
identity (1.3). Their main observation is as follows. Let us specify q to be a complex 
number, 141 c 1. and denote the corresponding specialization of the algebra w as vq. 
If one considers wq as the result of the quantization of Cm(W2) with standard Poisson 
structure on it, then the Wick symbol of the left- and right-hand sides of (1.20) can be 
computed explicitly in the limit q + 1. The identity (1.20) then reduces to the five-term 
identity (1.3). 

In this paper we study the relation (1.20) in the limit when q approaches a root of 1. 
We show that in this limit it provides a certain relation which had appeared before in the 
paper [15] as a local integrability condition of a class of threedimensional solvable lattice 
models [25]. 

In section 2 we discuss the limit q -+ 1. Section 3 contains the analysis of the limit 
q -+ <, where < is a primitive root of unity. In section 4 we identify the 'restricted 
sta-triangle relation' from [151 with the relation which is the limit of (1.20) when q -+ <. 

The main point of our calculations consists in a correct handling of singular elements 
in the centre of the algebra wq in the limit q -+ 1. A similar technique has recently been 
applied to other problems [26-281 related to the structure of quantum groups at roots of 
Unity. 

2. Quantum d i l o g a r i h  

In this section we consider the asymptotic form of the relations (l.lSt(l.20) in the limit 
q -+ 1. For convenience let us set q = e-r. 
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At q = 1 the algebra w, is commutative. However, the function (x, q)= has essential 
singularity at r = 0 (see equation (2.9) below) and to get a sensible limit of (1.18)-(1.20) 
one has to use both the asymptotic expansion (2.9) and the asymptotic expansion of the 
multiplication law in wq when r + 0. 

Denote by a * b the multiplication in w, and by ab  the multiplication in wl. The 
algebra wq is a deformation of WI (remember that wq = as a vector space) and when 
r + O  

(2.1) 
Functions mt(a,  b), m2(a,b), ... can be explicitly computed from (1.16). The function 
[a.  b} = ml(u, b) - ml(b,a)  determines the Poisson algebra structure on VI: 

a * 6 = ab + r m ]  (a, b) + sZm2(a, b) + O(r3) .  

This Poisson bracket ( , ) is determined uniquely by its value on generators U and U: 

[ U ,  U) = - u v .  (2.5) 

exp(-a/r) *exp(-b/r) = F(a,  b)exp(-H(a, b)/r)(l + O ( T ) )  (2.6) 
when r -+ 0. Here F(a ,  b) is some function which can be expressed merely in terms of 
( 1 and mz(a,b). 

Notice also that the adjoint action of the element exp(-a/r) in wq becomes a Poisson 
action of exp(-a) as q + 1, 

Let H ( a ,  b) be the Campbell-Hausdorff function defined as 

exp(-a/r) * b * exp(a/r) = exp(-a) o b  (1 + O(r) )  (2.7) 
where 

exp(-a) o b = [a[.  . . ( a ,  b ) .  . .). 
n! - 

"30 " 
We are now ready to consider the relation (1.20) in the limit q + 1. Applying the 

Euler-Maclaurin formula to the logarithm of ( x ;  q)m, one easily obtains the following 
asymptotic expansion: 

where all functions of x are understood as formal power series over x .  Substituting this 
asymptotics into (1.20) one gets 

R(u) * R(u) = R(u)  * R(-uu).* R ( u ) ( ~  + O(T)) .  (2.11) 
we want to compare the first two of the asymptotic expansions in r of the 

logarithms of both sides of this relation: First, let us formulate some general statement. 
Suppose we have elements R, in W, which satisfy the relation 

RI * Rz = R3 * R4 * R5 (2.12) 

in Wq with the asymptotics 

R, = Mie-Li/r(l + O(r) )  
as r 3 0. Then for Li and Mr we have 

(2.13) 
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Proposition 2.1. The elements Li and Mi satisfy the following relations: 

H(LI,  Lz) = H(L3,  H(L4, Ls)) = H ( H ( L 3 ,  Ld, L5) 
Ml(e+ o M ~ ) F ( L I ,  L Z )  = ~ 3 ( e - ~ '  o M ~ ) F ( L ~ ,  ~ 4 ) ( e ~ ( ~ 3 * ~ 4 )  o M ~ ) F ( H ( L ~ ,  ~ d ) ,  ~ 5 )  

Ml(e+ o M ~ ) F ( L I ,  b) = M3(e+ o ( ~ 4 ( e - ~ *  o M ~ ) F ( L ~ ,  L ~ ) ) ) F ( L ~ .  H ( L ~ ,  ~ 5 ) ) ) .  

(2.14) 

(2.15) 

(2.16) 
The proof is an easy corollary of (2.6) and (2.7). Conversely, it is quite clear that the 

(2.17) 

Now applying proposition 2.1 to (2.11) we obtain the following identity for the 

relations (2.14t(2.16) for element Li and Mi imply the following relation: 

RI * RZ = R3 * R4 * R5(l+ O ( T ) )  

for any elements Ri with asymtotics (2.13). 

, dilogarithm: 

H(Li*(u), Liz@)) = H(Liz(u), H(Liz(-uu), Liz(u))) 
= H(H(Liz(u), Lh(-Uu)). LiZ(u))) (2.18) 

and corresponding counterparts of the identities (2.15) and (2.16). 
Obviously, the identity (2.18) can be interpreted as the equality of the singular in r parts 

of the logarithms of the Wick symbols of left- and right-hand sides of (1.20). Remarkably, 
as was shown in [22], this identity is equivalent to the the five-tem identity (1.3). 

3. Quantum dilogarithm at roots of unity 

Throughout this section we assume N to be an integer, N > 2, and 

q e-rlNZc ( N  = 1 (3.1) 
where f is a primitive root of unity of degree N ,  i.e. such that 

Consider the algebra w<. The following properties of w< are well known: 

The algebra w< has a centre Z(w,) generated by uN and u N .  
Let 01 and fl  be non-zero complex numbers and I#,# be the ideal in w< generated by 
(uN - r r N )  and (uN - B N ) .  then for all 01, f l  E @* 

# 1, 1 6 k 6 N - 1 .  

- 
'~~<I~c,.LI H< (3.2) 

where H< is the finitedimensional algebra generated by the elements U, V obeying the 
relations 

U V = < V U  U N = V N = l .  (3.3) 

(3.4) 

(3.5) 
This bracket determines of the Poisson algebra structure on the centre Z(w<), together with 
its Poisson action on WC: 

Let a * b be the multiplication in wq and ab the multiplication in w,: 
a * b = a .  b + rml(a,  6 )  + r2m& b)  + O ( r 3 ) .  

(a .  bl= ml(a ,b)  - m l ( b . 4 .  

When at least one of the elements a or b belongs to the centre of wc define the bracket 

{a. bcl = {a, blc + b{a, c]  
for a E Z(W<) and b,  c E w<. 
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Computing the bracket (a. b]  on generators from (3.4). one obtains 

[U, u N )  = -uuN/N { U N ,  U) = -uNu/N {U". u N )  = -uNuN. (3.7) 
Let a E Z(wr) and b E wr denote 

where * is the multiplication in wq, q = e-rI"c. Using equation (3.7) one can easily 
establish 

Proposition 3.1. 
exp(-Liz(uN)) o U = U ( I  - U ~ ) - ' / ~  

exp(-Liz(uN)) o U = u(1 - U  ) . N I/N (3.9) 

Define the following function: 
N-1 

d(x) = d(x, c, N) = (1 - x N ) ( N - I ) / Z N  n(l - c k x ) - k / N  (3.10) 

where all the roots are understood as their series expansions in x at x = 0. This function 
is analytic for 1x1 .c 1 and can be analytically continued to the cut complex plane with N 
branch cuts along the rays argx = k k / N ,  k = 0,. . . , N - 1, 1x1 > 1. 

Proposition 3.2. When 1x1 c 1, q = e-r/N1c, r + 0, the function ( x ; q ) ,  has the 
asymptotic form 

(3.1 1) 

k=I 

The following result holds: 

(x ;q ) ,  = (1 -xN)(l-N)JZNR(xN)d(x)(I  + O(r) )  
where R is defined by (2.10). 

Proof: Write ( x ;  4)- as 

(3.12) 

and use (2.9) for each of the N factors in the last product, subsequently expanding the result 
in a series in r .  Then use the formula 

(3.13) 

Now, let us consider the relation (1.20) when q + 5 .  We will show that similarly to 
proposition 2.1 the leading terms in the asymptotics of (1.20) in this l i t  provide certain 
relations between functions in (3.11). The first one is a relation of the type (2.1 1) between 
elements of the centre Z ( E ) ,  while the second one (see equation (3.18) below) is a relation 
between the elements of W I  expressed only through the function d(x).  

First, note that for any complex CY 

R(ePLrx) = (1 - x)'R(x)(l+ O ( r ) ) .  (3.14) 
Now substitute (3.11) into (1.20). Since for any primitive root of unity gN(N-1)/2 = 
(-l)(N-l), we have 

= -e-r(N-f)/ZN,p"N, (3.15) 



Remarhx on the quantum dilogarithm 2223 

Using this relation for the second factor in the RHS of (1.20). rescaling the generators 
(U, U) -+ ().U, Au),  with A = exp((N - 1)r/2NZ) and using (3.14) we obtain 

R(UN)d(U)R(uN)d(U) = R(UN)d(V)R(-uNUN)d(-VU)R(UN)d(U)(l + O(t ) )  . (3.16) 

Now, using (3.8) move all R's to the right. They then cancel due to (2.1 1). Hence for d(x) 
one gets 

d(u)(e-Liz(VN) o d(u)) = d(u)(e-Li2('") o d(-w))(e-Liz(UN) o e-Lil(-UNUN) o d(u)) . 
Using equation (3.9) and rescaling U -+ u/( l  - 
Theorem 3.3. The following 'quantum five-term' identity holds: 

(3.17) 

we obtain: 

(3.18) 

where U, U, uu = p u ,  are the generators of mc. 
Remarkably, the Nth power of the arguments in (3.18) precisely match the arguments 

of the classical 'five-term' identity in the form (1.6). 
Note that the relation (3.18) in an equivalent (but different) form has been given in [22]. 

It was noted therein that this relation is also equivalent to the 'reshicted star-triangle relation' 
which has been used in 11.51 as a local integrability condition for the three-dimensional lattice 
models of [25]. We discuss this connection in the next section. 

4. Restricted star-triangle relation 

Following [E] ,  let us formulate the 'restricted star-triangle relations' 
Let oilz be a primitive root of -1 such that 

("/Z)Z = &J = <-I  

X N  + yN = 1 .  

( d 2 ) N  = -1, 

Consider the algebraic curve in Cz (Fermat curve), defined as 

For n E Z define the meromorphic function iij(x, y, n)  on the curve (4.2) as 

- 
w ( x ,  y ,  N fit) = E(x, y, n)  . 

Consider the automorphism of the curve (4.2) given by the map: 

( x ,  y )  + (F, jq 

~ ( x ,  y, n)iij(Z, 7, -n) = @(n)-' 

j ;  = &J-'x-I y = o-"Zy/x . 

It is easy to check that 

where 

@ @ ) = ( U  '1' ) n(Ni.n) 

Let SI, ti, ~ 2 . 1 2 ,  t i 2  E C satisfy the relations 

O(n + N )  = O(-n) = @(n) .  

s; + t :  =s;+t; = S r  +S! + t ;  = 1 .  
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Define five points (x i ,  yi), i = 1, .  . . ,5 on the curve (4.2) such that 

V V Bazhanov and N Yu Reshetikhin 

(XI,YI) = ( S 1 , t l )  

(x3, Y3) = ( t Z / W S I , 0 - 1 / 2 t 1 2 / S 1 )  (x4, Y4) = ( t l Z / h ,  W / t l )  (4.9) 
(xs, YS) = ( t l ~ 2 / f l 2 ~  

(x2. Y2) = ( 1 2 . 0 S Z )  

The following result was obtained in [ 151 (see equation ( I  .22) therein): 

Theorem 4.1. The function 3 satisfies the following 'restricted star-triangle relation' 

(4.10) 

where a, b, c, d E ZN, i i i (x i ,  n )  
normalization factor which does not depend on a ,  b and c .  

The normalization factor q5 can be easily calculated and we will do that later. Due 
to (4.4) and (4.7) the differences of the integers a .  6, c and d in (3.18) can be interpreted 
modulo N. The relations among the arguments of iTi as they are presented here in (4.9) are 
equivalent to those in (1.21) of 1151 (provided one corrects a minor misprint in the second 
formula in (1.21b) therein which should read A(u;) = O V I A ( U Z / W ~ I ) / A ( ~ ~ ) ) .  

Consider the following matrix realization of the algebra ,Vu-) (see equation (3.3)): 

E(xj, yi, n) with x i ,  yi defined above in (4.9) and q5 is a 

U (110.6) v (V0.b)  (4.1 1) 

where 
un.b &,b+l  va+b = 8,,bOo a, b E ZN (4.12) 

with 
1 a = b  (modN) 
0 otherwise. 8o.b = (4.13) 

Then it follows from (3.2) that the generators U ,  U of wm-l can be written as 
u = a u  u = g v  (4.14) 

(4.15) 
(4.16) 

where 
(4.17) 

and we fix the phases of the Nth roots requiring that A(0) = A(0,O) = 1. 
Consider the asymptotic expansion of (4.10) when SI, s2 --t 0 and express the parameters 

in (4.8) through (Y and B in (4.14) as follows: 
SI = (Y $2 = B ti = A((Y) tz = A V )  t i 2  = A((Y, P )  . (4.18) 

Theorem 4.2. The asymptotic expansion of the restricted star-triangle relation (4.10) as 
SI, s2 -+ 0 is equivalent to the quantum five-term identity (3.18) in the formal power series 
over U and U, provided the identification (4.18) holds. 

Proof: Below, we will show that the required expansion of (4.10) is just the relation (3.18) 
written in a matrix form. Following [15], we introduce the functions 

(4.19) 

N I / N  A(a) = (1 -a ) ' I N  A@, p )  = (1 - aN - p ) 

y E A(x) = (1 - x N ) I l N  
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(4.20) 

w ( x ,  n) = w ( x ,  O)E(x, A@), n) (4.21) 
as analytic continuations of formal power series over x into the whole complex plane with 
cuts from the points x = exp(27rik/N), k = 0, . . . , N - 1 to infinity. 

We will use the following properties [U] of the function w ( x ,  n) :  

Proposition 4.3. The function w ( x ,  n)  satisfies the following relations when 1x1 e 1: 
w(o"x, 0) = w(x .  n)  n w ( x ,  k)  = 1 (4.22a) 

k€& 

(4.22b) 

(4.22~) 

(4.224 

where 
A(x)  = (x/A(~)) '~- l"* (4.23) 

The proof consists of straightforward calculations using the definitions (4.19)-(4.21). 
It follows from (3.10) with 5 = m-' 

(4.25) 

Using this and proposition 4.3 one can easily compute the following matrix elements: 
Proposition 4.4. The following relations holds: 

(4.26) 

(4.27) 

(4.28) 
Q(a)W'(b)w(x, a - b) 

d ( - ~ - ~ / * A ( x )  VU),,b = 
c+A(x) 

Moreover, from (4.2%) and (4.22~) it follows that 
det(d(xV)) = det(d(xU)) = det(d(xVU)) = 1 .  (4.29) 

Now set a = 0 in (4.10), use (4.6) for the E(x3, 4) and replace all E(x, n)  therein 
by w(x,  n). This merely changes the normalization factor. Remembering (4.18) and using 
proposition 4.4, we can rewrite (4.10) as a matrix equation 

d(u)d(u) = 4'd(u/A(u))d(-vu/A(u, u))d(u/A(u)) (4.30) 
where d(x) is defined by (3.10) with < = The normalization factor 4' is determined 
by taking determinants of both sides of (4.30) and using (4.29). This gives 4' = 1 and 
(4.30) exactly reduces to (3.18). This concludes the proof of the theorem 4.2. 
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